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SYMBOLS

B Magnetic field

E Electric field

H Total enthalpy

M Mach number

m Source strength

N Interaction parameter

pPressure

r Radial distance..

R Gas constant

R Magnetic Reynolds numberm

T Temperature

uvw r,e,z components of velocity, respectively

2y

N

y Ratio of specific heats



ON THE ACCELERATION OF MAGNETOGASDYNAMIC CHANNEL

FLOWS THROUGH THE SONIC VELOCITY

by F. D. Hains

SUMMARY

e possibility of passage through the sonic

velocity is examined for the magnetogasdynamic flow through

a diverging, straight-walled channel. In addition to the

usual assumptions of continuum MGD, the electrical conduc-

tivity is assumed to be small, but the effect of Hall

current is included. A number of different cases arise,

depending on whether or not one or more parameters vanish

or are small.

Numerical results for the case where the Hall

current vanishes, and the problem becomes analogous to the

gasdynamic source, indicate the sonic point can be placed

anywhere along the channel by proper selection of the

electric and magnetic field strengths and boundary condi-

tions.
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I* INTRODUCTION

This report deals with the flow of compressible, electri-

cally conducting gases of sufficient density to satisfy the continuum

assumptions of gasdynamics. An attempt will be made to obtain exact

solutions, either closed form or numerical, of the magnetogasdynamic

flow equations. Since the MGD equations reduce to those of ordinary

gas dynamics when the electrical conductivity vanishes, it is logi-

cal to seek solutions which will reduce to known exact solutions of'

gasdynamics. Two exact solutions of gasdynamics are the source-

sink and source-vortex. This report will consider the MGD, source

and will emphasize those solutions which pass through the sonic

velocity.

In Reference 1, three simple solutions for the MGD source

were presented. The configuration studied is shown in Figure 1. A

source flow with radial velocity u interacts with crossed electric

and magnetic field. The electric field is uniform in the z direc-

tion, while the magnetic field is produced by a wire along the z

axis. The 'three cases considered are summarized in Table I.

TABLE I /

Case R K E P Comments

A 0 0 0 Finite Closed form solution

B 0 0 Finite 0 Solution sketched

C 0 0 Finite Finite One particular solution

Closed form solutions were obtained in Case A, where the electric
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field vanishes and the flow is isoenergetic. The velocity distri-

butions for various values of are shown in Figure 3. Only the

solution for p = 0.6 passes through the sonic velocity u = 0.5.

All other solutions terminate with sonic velocity at a limit circle.

Some of these solutions lie inside a limit circle while others lie

outside a limit circle. The solutions for Case B are sketched in

Figure 4. It appears that all solutions for this case are bounded

in finite regions formed by two limit circles. In Case C, a parti-

cular solution was obtained which proceeds at constant Mach number.

The cases discussed in this report are shown in Table II.

Because of the non-linearity of the equations, numerical integra-

tion is usually required for these cases.

TABLE II

Case R K E Comments
m

1 0 Finite Finite Finite

2 0 Finite Finite Finite One particular solution

3 0 0 Finite Finite w 0

4 0 0 Finite Finite w= 0

5 Finite 0 0 Finite

6 Finite 0' 0 0 Solve for Be



II. BASIC EQUATIONS

The basic MGD equations in vector form are

continuity Pq = 0 i)

momentum P(,q.)q + -' x 9 (2)

energy p(q-)H = E * j (3)

Ohm's law PE +[ n x -el *
e

Maxwell's V • j= 0 (5)
equations

Sx (6)

V B = 0 (7)

x 0 (8)

V. 0 o(9)

gas law p = pRT (10)

Equations (1) - (9) can be expressed in the following scalar form in

the r-e-z coordinate system of Figure 1.

1lar(rpu) +l (pv) +-L(pw) = 0 (ii)
r ar r 3 a

[ u
P - r 87-r-+ w ISz + = JeBz-j Be (12)

S+v V av uv av a (13)
PLU r T-+ + +z = JzBr - JrBz

P V r '- + w  + = JrB9 - J(Br (14)
P IUTr- 7 51 aZI a r
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pu Ir + r I--+pw =J + EeJe + EJ (15)am r T - .r 1
r a [E r +VBz "wBe- (JeBz - JzBe (16)

e

je= a L e+wB -uB - -(jB- JrBz)J (17)r z r
e

Jz = [Ez+UBe-VBr (jrBBe - j eBr (18)
e

1 a IJe 3 Jz(rjr ) + --- +- 0 (19)

l(70r r 7ea

C B r - rB) (20)

Jo -r --a (z1)
a B aBr r (2
a z O r )21)

rE 40(22)

(rB) ) 0 (23)r77 r r~7 +T

1E irE a
r 0 (24)

OE aE
r z 0  (25)

az Cr

CrE0  C (26)

CrE CE CE
1 ar 1 8-a T + 0 (27)
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To obtain solutions to this set of equations without further simpli-

fying assumptions would be difficult.
t

For the source shown in Figure 1, we can assume

Br = Bz E r = E - 0
(28)

E = E (a constant)z

Eqs. (23) - (27) are automatically satisfied by these assumptions.

In addition, Eq. (13) is satisfied by v = 0, and Eq. (21) leads to

J9 = 0. The remaining equations simplify to

r -(rpu) +-(pw) = 0 (29)

-[uu  a -j B (30)L r + w +z az r z e

p [ + W + z JrBe (31)

P H aH .Ej (32).
PU r+ + PEzWj

r = wB +  (JB (33)
e

jz= O[E+uBe - l(JrBer (34)
e

Sa (Jz
TFr r) +- = 0 (35)

Jr (rB 0 ) (36)
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Jz 1r r(rB (37)

Combining Eq. (33) and (34)

Jr (jBe)2[ wBe + -n(E + uB) (38)

and

+

These two equations are used to eliminate Jr and J from the other

equations.

All equations up to this point are dimensional, although

the tilda which indicates a dimensional quantity has been omitted

for simplicity. It is convenient at this point to non-dimensionalize,

using the following definitions:

r = /r o  P.= Z/PS u = /um P -/Ps

TT/Ts WW/Um Be = BoB
z /r °0 T =/ W - = ;/ e 9/B

Ps (4o)

r =  /cumB 0  Jz = J/cumB0  E = E/umB0 H =f Ps

,B
2 r

R= Umr N -r N sm K = --n m =r/roPsu
m mo0 P um0 o m

e

Many of these are the same used in Case A of Reference 1 where the

flow is isoenergetic (E = 0) so that

2
yim (41)
Y-1p 2
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Although E is generally not zero in this report, it is convenient

to retain the same definitions.

The non-dimensional form of the basic equations is

1 w-(rpu) + A(Pw) = 0 (42)

uNBe[E+uBe+KwB ]
PU u + AP. -u +a 22 = (43Iu3 ap dr l+K2B2 (4,)

8w ~N A!ct2=I _w+K (E+uBe)1

PU .. + pw w-. +a In (44

ar z aZ 1+K 2Be2

22

H , -H 2NE(E+BeaKwwe)puV+pw 1 2 KB2 2 4+ )

_z 1+K B

E1 8 (r rBe 'w+K[E+uBel) 8 E+u e Kw 2

R IE ~++KB2](

2 I+K2 / 2 (48)

where

p = P2 (49)

and
H = T + u2 + w2 (50)
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III. CASE 1

In most applications of MGD channel flow the electrical

conductivity is small. For this reason this case will be restricted

to solutions with Rm = O. Physically this means the magnetic field

will interact with the flow, but not vice versa. The basic equations

simplify with Eqs. (47) and (48) satisfied by B8 = l/r, and the

remaining equations become

r(rpu) + (51)

Pu u -N[Er + u + Kw/r (
p u 6r+ p w - +  a - r =  +K (5 2 )

rar + z ar r2 +K2

Ow + w+ a N[-w +K(E +u/r)) (v,)pd r + p z +  i 2 2
r +K

8H 8H .2.NEr[,.-+u + Kw/r (4
pu -r + pw (54

=
)r

+ K

In this form the equations are still very difficult to solve, so we
azassume =z 0-, and reduce to the following set of ordinary differen-

tial equations

rpu = m (55)

du -N[Er + u + Kw/r (56)dr dr r 2 K2r +K

dw N[-w + K(E + u/r)]PUr 2 2 (57)
r ~r 2+K2

dH 2NEr[Er +u + Kw/r)Pu r =  2 (58)
r ~ r 2+K 2
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Using Eqs. (49), (50) and (55) to eliminate p, p, and H, we obtain

du F (59)
dr G

where

F a 2 L r 2 u2 - Er3 + 2 Kwr)u-2E2r4-2r2w2]+ (r2+K2)T}
(60)

G -r(r2+K2)[y.21 u2-T] (61)

dw - wr+ K(Er +u)J (62)
2r 2(2

(r+K)

dT 2PEr 2 [Er +u +Kw/r u w (63)
d.T.+u+K/r -2u L - 2w d- 63

dr r 2  dr dr

For given boundary conditions and specific values of the parameters

Y, 3, E and K, these equations can be integrated numerically to

yield the solution.

Before doing this, it is interesting to study the limit

circle where F f 0, G = 0. Eq. (59) indicates the gradient in u is

infinite so the solution cannot penetrate the limit circle. From the

definition of local Mach number given by

a2 +2
M = u +w (64)

the flow must be supersonic at the limit circle. As in Case A shown

in Figure 3, we expect solutions which lie inside the limit circles,

and others which lie outside the limit circles. The type of results

that might be expected are sketched in Figure 5(a) - 5(d).
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In this report we seek solutions which do not terminate in

limit lines. A characteristic point (rc, uc, Tc, wc ) is one which

satisfies the conditions F = G = 0. Since d is indeterminate, moredr

than one integral curve may pass through the characteristic point.

The singularity condition G = 0 leads to

2 2 (65)
c 7-l C

and the regularity condition F = 0 leads to the expression

{U2 +(2y-l+xW)U +(y-l)(l+w2 } -(l+X2)U2 = 0 (66)

In the last equation one variable has been eliminated by introducing

the quantities

u w_ a K (67)

Er Er rC C

The slopes of the integral curves at the characteristic point are

found by L'Hospital's Rule.

(rdu _ Lim du Lim d (68)
dr r-rc

U r = r-r dG/dr

Two curves pass through each characteristic point with slopes

-b Vb 2 - 4ac, (69)
\dr/ 2a

where

a = 2r c (r2 +K (+-)u (70)
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b r 2 +2r2 +2K 2u + EEr3 +Kwcrc]uo -2pr2W2 2PE2r4 (71)2_ rc0 cc-.2Y-E c (7c)

C 2 [2(ypl)r3 +(2py +2 2)rcK2]u3

(y-l)(r +K) c

c
+ y)r2 [(5y-2) PEr 4 + (5y-2+p ) EK2 r 2 + Cy+20Y-30)pKr2w0

" rPK3w]u2 +-- 20[E2r + 3E 2K 2r3 +r3+r K2_2pr3)w 2
r2+K L C C + c C/ C

c

+ 2PKEr 3w u (72)

If, for example, rc and uc are specified, the other coordin-

ates T and w0 of the characteristic point are found from Eqs. (65)

and (66), respectively. The slopes of the two solutions are then

found from Eq. (69). This information is sufficient to start into-

gration of Eqs. (59), (62) and (63) at the characteristic point in both

the upstream and downstream directions.

In Reference 2, a study is made of an accelerator similar

to the one shown in Figure 2. The electrodes are assumed to be para-

llel to the r-9 plane so that at these surfaces w = 0. Eqs. (59) and

(63) were solved for supersonic flows with the assumption w = 0 every-

where. It is claimed this is a reasonable approximation as long as

K < 1. The real criteria should be how large is the term OK(Er+u)2 K2r +K

in Eq. (62). Even if K < 1 this term might be large and make the

approximation .a poor one. In order to obtain an exact solution one

must return to the set of Eqs. (51)-(54) which allow for a variation

in the z direction.
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IV. CASE 2

The non-dimensional forms of Eqs. (38) and (39) are

Jr r2+K[]2  (73)

z=21-2-[r 2 + w + Kw] (74)

Jz = r2+K 2

The introduction of w and the Hall current usually results in a

radial component of current. If we specify that

.W K(Er + u) (75)
r

so that Jr = 0, Eqs. (59)9 (62) and (63) are satisfied by the solu-

tion
-NE

U = (76)

--+ 
(77)

P +1

E 2m
P = P~l(78)

= m(P +l) (79)

OEr
2

The Mach number is constant

(2 (80)

This particular solution reduces to Case C when K = 0.
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V. CASE 3

If K = 0, Eqs. (59)-(63) reduce to

du~ utp[- 2u2-4-2 Eru-2E2r2"2w2]+ T} (r 1

w = clr' (82)

dT u 83)

S2PE[Er + u -2u r- 2w d()T7 dr dr

where c1 is a constant of integration. With the Hall current absent,

solutions can still be obtained with jr 0. The numerical integra-

tion of these equations is treated in the same way as in Case 1.
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VI. CASE 4

If cI = 0, so that w = 0, Eqs. (81) and (83) become

du -up 2y u2 + 4Y-2 Er + 2E 2r 2] + uT (4
dr ~~[T. 27 2T] (4

r

dT duwrr= 2pE(Er +u) -2u- (85)

In this case, the flow velocity is in the radial direction and the

electrodes shown in Figure 2 are planes perpendicular to the wire. It

is convenient to split this problem into two suicqses, depending on

the sign of E.

If E < 0, the introduction of the similarity parameter*

= - Er (86)

leads to

d 2Y- u3 + 4y-2 Cu 2 -212u +uT
du Y-1 Y-1 F (87)

dT du-= 2p(C-u) -2u d (88)

Again we restrict our interest to solutions that do not terminate in

The similarity parameters U =- and t = - could also be used. TheseE 2
parameters are used in the treatment of t e constant area channel in
Appendix A.
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limit lines. Since w = 0, the flow is sonic at the limit circle, so

the solutions we seek must pass through the sonic velocity.

The singularity condition G = 0 is the same as Eq. (65),

while the regularity condition F = 0 leads to

u 1- 2y / (y-1) +c (89)
c 2(y --

The two roots l and *2 are plotted as a function of p in Figure 6 for

a monatomic gas. Only positive values of * are plotted since uc must

be positive. For this reason *2 is not shown for 0 < 0.6. The graph

shows that 0 l 0.4 and 1.0 < *2

Eq. (89) shows the locus of the projection of the character-

istic points (C , uc, T ) on the uc - C plane is a straight line for

each value of p. Some of these lines are shown in Figure 7. No charac-

teristic points lie in the region separated by the lines P = -.

Following the method used in Case 1, the slopes of the two

solutions passing through a characteristic point are

du\ - b V - 4ac. (90)
c =  2a

where

a = 8

b -(5P -i)* 12p 4 (91)

c = (2-5*)P*

For each value of *, two values of (du/dC) are obtained. The slopes
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are a function of P only, and hence are constant along each of the

straight lines in Figure 7. The variation of slope with p is shown

in Figure 8. Only one of the four curves is negative, so that most

of the solutions are accelerating flows. The curves corresponding to

*2 terminate at p = 0.6 where 2 is infinite, and the curves corres-

ponding to terminate at 0 = 0.3 where the slopes become complex.
f

These results are shown in Figure 7.

Numerical solutions were obtained for Cc = 1.0 and 8 = 2.0.

The results are compared with the ordinary gasdynamic flow E = B = 0

in Table III.

TABLE III

u T M p/M p/M

Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13

t t
E= B=O

tt ttt t t

t jMint tMax

-Mint t tMax t

The solid curve in Figures 9 - 13 corresponds to an accel-

erating flow which becomes asymptotic to the solution given by
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Eqs. (76) - (80) in Case 2 with K = 0. The solution begins at a finite

radius with infinite density, finite pressure, and zero velocity, tem-

perature and Mach number. Energy is continuously fed into the gas as

it accelerates through the sonic velocity.

The solution shown by the dashed curves is an accelerating

flow whose temperature and pressure increases as the Mach number and

density decreases. The solution begins with zero pressure and density,

and finite velocity, temperature and Mach number. As the velocity

increases, the rapid rise in temperature causes a drop in the Mach

number until the initially supersonic flow becomes subsonic. Again

energy is continuously added to the gas, but at any point in the flow

this solution has a higher stagnation enthalpy than the previous one.

The dot-dashed curves begin at C = 0 with infinite pressure

and density, and finite velocity, temperature and Mach number. The

flow accelerates through the sonic velocity and becomes asymptotic to

the solution for Case 2. In order to accomplish this, a minimum occurs

in the temperature curve and a maximum in the Mach number curve. Energy

is extracted from the flow up to C 2.2 and added to the flow beyond

that point. Thus, the flow acts first as a generator and then later

as a motor.

The solution plotted as heavy dashed curves is the only de-

celerating flow at the sonic point. The flow begins at a finite radius

with zero temperature and pressure, and finite velocity, density and

Mach number. The supersonic flow decelerates through the sonic velo-

city, reaches a minimum velocity, and begins to accelerate. The density

reaches a maximum while the flow is still decelerating. The flow
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changes from a generator to a motor after passing the sonic point.

The second subcase occurs when E > 0. Introducing the simil-

arity parameter

=Er

Eqs. (84) and (85) become

du [_2y 3+4y-2 u2 +2 2u] uT
du - 1 Y-1 u~u (92)

4u2 T]

2pT + u) -2u du (93)

Following the procedure used in the first subcase,

u -1+ 2y +

tc2(y-~

T_) = - (95)
t ~2a,

where

a = 8cp

b = (15p.-l)t + 12pwp (96)

c = (2 +5(P)Pw )
The variation of the quantity cp appearing in Eq. (94) is shown in
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Figure 6. This quantity is positive only if p < 0.6, and takes on all

positive values. Hence, all points in the u- plane can be charac-

teristic points. The slopes of the solutions at the characteristic

points are plotted in Figure 14 as a function of p. The slopes are

both negative and are real for 0.32 < p < 0.60. The locus of possible

characteristic points which yield real solutions are shown in Figure 15.

Numerical solutions were obtained for c = 1.0 and P = 0.5.

These results appear in Figures 16-20. Only curve I is shown because

an infinite number of curves pass through the characteristic point with

the same slope as curve II, which is the envelope of the curves. The

numerical integration in a direction away from the characteristic point

was found to be unstable while integration towards the characteristic

point was stable. Two solutions called IIa and IIb are shown in Fig-

ures 21-25 for a small region near the characteristic point. Away from

the characteristic point these solutions are practically the same as

curve I and cannot be distinguished in the scales used in Figures 16-

19. No attempt was made to extend the envelope II or to extend the

curves lla and lib into the region where < 1.

Curve I begins at a finite radius with zero temperature and

pressure, and infinite Mach number. The velocity and density are

finite. As the flow decelerates through the sonic velocity the tem-

perature and pressure increases as the density decreases. Energy is

added to the flow for all solutions with E > 0.

The reason why an infinite number of solutions must pass

through the characteristic point is that both curves I and II are

decelerating and supersonic when < c and both decelerating and
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subsonic when > c. This means they pass from region 1 to region 3

in Figure 26. The curve AC is the locus of characteristic points, or

the intersection of the surface F = 0 with the sonic surface G = 0.

In regions 1 and 2 above the sonic surface the flow is supersonic, and

in regions 3 and 4 below the sonic surface the flow is subsonic. The

curves I and II intersect at the characteristic point B. The surface

E is generated by curve I as B moves from A to C and the surface D is

a similar surface generated by curve II. Solutions which pass through

points in region 1 lying between surfaces D and E must pass through

the curve AC with the two permissible slopes of curves I and II. The

solutions cannot penetrate the surfaces D or E except along AC, for

this would produce a characteristic point which can occur only along

AC. Neither can they be parallel to AC because the projection A'B'

on the u-t plane has a positive slope while < 0 0 in region 1. Thus,

as numerical integration shows, curve II is an envelope of solutions

such as hla and hIb which pass through the characteristic point with

the same slope.

In all the cases for E <9, which are shown in Figure 9,

the two curves passing through the characteristic point are always

separated by a sonic surface and the surface F = 0 for any given value

of C. Thus, at the same C one solution is subsonic while the other

is supersonic. This means the surfaces corresponding to D and E in

Figure 26 always lie in different regions, and only two curves can

pass through the characteristic point.

Some solutions for accelerating supersonic flows were pre-

sented in Reference 3. One type of solution is asymptotic to Case 2
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with K = 0. The second type of solution accelerates to a maximum

velocity and then decelerates and terminates at a limit line. No

solutions for acceleration through the sonic velocity were presented.
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VII. CASE 5

This case deals with solutions for finite values of R •m

First, the method of small perturbations is used to find solutions

which hold for small values of R • The one solution of Case A which

m

passes through the sonic velocity is chosen as the zero order solution.

Let

u = u + Ru + R2u +•
0 m1 m2

2 (97)P =Po+RmP 1 + Rm + " ".
0 mI m 2

Be (Be) + Rm(Be)I + R2B +" " "

With E 0, Eqs. (42)-(50) reduce to

az

rpu = m (98)

du d -NuB2 (99)Pdr dr=

P u2. P(100)p u = p(O0

dBe Be
- - RmUB (I01)d r M

Substitution of Eq. (97) into Eqs. (98)-(101), and collection of like

powers of R yields:

VIM,

rpou = m (102)

duo  dpo  B

p U d + a = 0 NuB (103)
dr dr)
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2 10+
p +p i p 104

o 0 0 0

d(BO) (B 9)(15

dr r0(15

p1 u + p u1  0 (106)

pu du +pu du 0 d
Pu o r+(~l 10 dr dr

000

p 1  2p u u pu 2  = p(108).p oo +1i0 1i

=~~ U (Be) (109)
dr r0

In this analysis the higher order terms will be neglected.

The zero order equations.(102)-(106) are satisfied by the

-1
solution of Case A with P =

1

1B ~ (110)

R r
m
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Combining Eqs. (106) and (108),

p, (R + -Du I (112)

and integration of Eq. (109) leads to

(Be)l = n CIR (113)

R

where C1 is the integration constant. Elimination of pl and (Be)

from Eq. (107) yields

d(Ru) - 4n CIR F
1 _ 1 ~(114)dR R(+)yR 2 ]  G

The singularity condition G = 0 is

R =(115)

and the Regularity condition F 0 is

C (116)

Integration of Eq. (114) results in

U -4 Jn x dx (117)Ul = Y1) fV'Y x(l-x 2

The variation of (Be), ul, p1 and p1 with R when Y = 5/3 is

shown in Figure 27. (Be) is negative upstream of the sonic point, and

zero at the sonic point. Downstream of the sonic point it is positive,
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and reaches a maximum at R = 2e. The curve for uI increases rapidly

from zero to a maximum at the sonic point. The perturbation in pressure

and the perturbation in density decreases from zero to - 2.5.

The previous method is valid only for small values of the

magnetic Reynolds number. The application of the method to some other
-1

solutions of Case A other than the one with P = y is difficult because

of the complicated form of the zero order solution. For these reasons

an attempt is made to solve Eqs. (98)-(101) directly for finite values

of R m  The numerical approach of Case 4 is used.

Integration of Eq. (101) yields

B = exp Rfu dr (118)r M6r
i

As will be shown later, all solutions passing through the sonic velo-

city are decelerating so that r. is either zero or the place where1

u = 1. Elimination of the density and pressure from the momentum equa-

tion results in the expression

-or2u3B2 + *2
du -P u (6 +y>1 u.(l-u

du 2(119)

dr r [u2 _('j 7 X)l+u2 ]

Restricting our attention to y = 5/3, and substituting Eq. (118) for
r

Be, -5u3 exp[2Rm  u d + u(l-u 2)

du Lm (120)
=  r [4u2 ( 2 0

Since we wish to start integration of Eq. (120) at the sonic point, it

might appear that the unknown integral in the numerator might be
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troublesome. Fortunately, this is not the case because the regular-

ity condition requires the product of P and the exponential factor to

be a known constant at the sonic point. Thus, it is possible to inte-

grate without knowing the value of B. at the sonic point. B. is cal-

culated from Eq. (118) after u is found. The singularity condition is

u = j and the regularity condition leads toC

ex R . Ix[2mi u dr] (121)

r C

so that Eq. (120) becomes

-(+ 3 exp [2Rmf u d u3 + u

du _ r c
dr- r4u 2  (122)

The sonic point is now the logical point to begin numerical integration.

The slope at the sonic point is given by

d u l~ 2 m c(13
dr - 4r (123)

The slope is always negative and real if Rmrc 2/3. This equation is

plotted in Figure 28 for several values of R . Through each character-

istic point (0.5, rc) there can be at most two possible slopes, both of

which are negative. The larger of the two slopes (in absolute value)

lies in Region I. Each slope in Region II corresponds to an infinite

number of solutions as in Case 5 when E > O. This was expected since

both slopes are negative and are also subsonic and supersonic in the
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same regions*

If we limit our calculations to slopes in Region I, the

solutions which pass through rc = 1 appear like those in Figure 29.

As R is increased from 0 to the maximum value of 2/3, the value of 0m

drops from 0.6 to 0.31. All the curves choke at a limit circle whose

radius decreases rapidly~ as R M- 2/3.m

By fixing R and integrating backwards from each value ofm

rc, ri and P are obtained. These results are plotted in Figure 30 for

slopes in Region I. For Rm = 0, P = 0.6. As R increases, P can take

on values less than 0.6. The maximum value of ri decreases with an

increase in Rm

The line r. = 3.5 intersects the curve Rm = 0.5 in points A

and B. These points also appear in Figure 28 in Region I. Note that

point A does not lie on the dashed line, which divides the two regions,

so that a portion of the curve extends below point A in Figure 30.

Points between A and B in Figure 30 have values of P which correspond to

solutions which pass through the sonic velocity with slopes in Region II.

Therefore, as we increase P, there is first a jump in slope from A to A'.

in Figure 28, f6llowed by a path to B' along the Rm = 0.5 curve, which

is terminated by a second jump to B. If ri is reduced to 2.5, point D

lies in Region I and all points from D to C, including C, lie in

Region II. Points which do not lie under the curve R = 0.5 choke.

In Figure 31, the range of values of Rm and 1 which permit

passage through the sonic velocity is shown for ri ='0.35. The solid

curve CED contains points in Region I, and the shaded area, including

the dashed curve CD, contains points in Region II. Line segment AB is
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the same as in Figure 30.

The solution for rj = 0.35 is shown in Figure 32. As 0 is

reduced to the value 0.41 all the solutions choke. For p = 0.41, we

have point B in Figures 30 and 31 and u is in Region I of
d iFigure

28. As P is decreased the slope jumps to Region II from B' to A',

and then back to Region I for point A. For values of 0 < 0.31 which

corresponds to point A the solutions again choke. An infinite number

of solutions pass through the sonic velocity in the range 0.31 ! P 0.41.

If Rm = 0, this region shrinks into point D in Figure 31

and p = 0.6. The solution is shown in Figure 33. A comparison can be

made with Figure 3 where the stagnation boundary condition was used

instead of r. = const.1
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VIII. CASE 6

Case A treats the limiting case R = 0, N 0 0, in which the

magnetic field interacts with the flow, but is not itself changed by

the flow. For non-zero values of R and N both the flow and magnetic
m

fields mutually interact. This case is concerned with the other limit-

ing case when N = 0, Rm 0. In this case, the flow distorts the
m

magnetic field but is not itself changed by the interaction.

Assuming -z  0, Eqs. (42) -(48) reduce to

rpu = m (124)

du + 0 (125)
P r dr

H = 1 (126)

dB B R (E + uB) (127)
r r m.

The first three equations are the ordinary gasdynamic equations

which integrate to yield

(128)
u(l -u) 2

This is the source flow which corresponds to the 0 = 0 curve in Fig-

ure 3.

Equation (127) can be placed in the form

ER [ dr r~d
ERf r u exp R u du +B r

rc I c (129)r ex R- m/ udr
t rc J
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where rc is given by Eq. (128) with uc = 0.5. Substitution of Eq. (128)

into Eq. (129) yields

B R mEfJ f(u)g(u,mRm)du +1

B 1 , (130)r um m)

where

f(u) 4u2_1
u3(1-u 2) 

4

(131)

g(U'mR) L 24,/-3)/ exp m /

In Eq. (130) the boundary condition Bcr c = m has been applied.

The results of numerical integration of Eq. (130) are plotted

in Figures (34) -(37). For a subsonic source with E 0, as r/m -

B - 0 when mR < 1, B - 0.366 when mR = 1, and B when mR > 1.

These results are shown in Figure (34). If E is increased to one,

B - 0 when mR = 0, and B - const, when 0 < mR 1. When m% >

B - -. These results appear in Figure (35).

For a supersonic source the magnetic field B -. with r/m

when mR > 0 and B -. 0 when mR = 0. The distribution of B is shown in
m m

Figure 36 for E = 0 and in Figure 37 for E = 1.0.

The limiting values of B for large r/m are summarized in

Table IV.
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TABLE IV

SUPERSONIC SOURCE SUBSONIC SOURCE

B -O 0 O0mR < 1m

E 0 B-co B -0366 mR m= 1

m

B -0 mR >1m

B - o mR > 0m
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IX. CONCLUSIONS

Solutions have been obtained for magnetogasdynamic source

flow with crossed electric and magnetic fields. The solutions have

been restricted to those which pass through the sonic velocity.

For the case where Rm = K = 0, the sonic circle can be placed

at any radius. If E >0O, an infinite number of solutions decelerate

through M = 1 with the same velocity gradient. There is one other solu-

tion which also decelerates through M = 1 with a different gradient in

velocity. If E < 0, four different solutions can pass through sonic

velocity at any given location of the sonic circle. Three of these are

accelerating flows.

The effect of non-zero magnetic Reynolds number was found for

source flow with E = 0. When R = 0 there is one solution which passesm

through M = 1 when 0.6. When R > 0 there is a range of P in whichm

solutions are possible. If R is increased beyond a certain limit, nom

solutions are possible.

The displacement of the magnetic field by ordinary gasdynamic

source flow was obtained for the limiting case when P = 0, Rm 0. For

a supersonic source the magnetic field always increases to infinity

with the radius for finite R • For a subsonic source this occurs onlym

if mR > 1. For other values of mR the field approaches a constant
m m

value or zero.

These results indicate many possibilities exist for the

passage through the sonic velocity without the need of a throat in

magnetogasdynamics.
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APPENDIX A

ACCELERATION THROUGH A CONSTANT AREA CHANNEL

This section deals with the flow through a constant area

channel with crossed electric and magnetic fields. The configuration

is shown in Figure A-1.

The governing equations in dimensionless form are

Pu = M(Al

u + 2 = -N(E+u) (A-2)T, dx

FldT + u L 2NE(E +u) (A-3)

p = pT

Eliminating the pressure and density yields

dU _-0U(l-U)(2-2U) F (A-5)'
dx GU2

dt dU
=2p(l -U) - 2U-Tx (A-6)Tdx

where

u T
U E Y 513 (A-7)

E2

The singularity condition G 0 leads to

tc 3c2

and the regularity condition F = 0 leads to

Uc = 0, U C= 1, Uc 0.4 (A.9)
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The two slopes at a characteristic point are

(~U P(12 - 15UC)

dx 8

\dx/ 0

The properties at the three characteristic points are summarized in

Table A-I.

TABLE A-I

u c ~ld t c t-D

C C C C

0 0 0 1.50 2A 20

0.4 0.48 0 0.750 1.20 0.6p

1.0 3.0 0 -o.3750 0 0.750

Since Eqs. (A-5) and (A-6) do not contain x, we can divide

the two equations to eliminate dx to obtain

dU U(5U -2) P

- lO+J lOU 2- 2t (

This equation in the phase plane is independent of P. Two character-

istic points exist and the properties of the solutions through these

points are summarized in Table A-II.

TABLE A-II

U t _I'dL
C c c

04 0. :75
0. 4 o. 48 0 1.25
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The solutions in the phase plane are shown in Figure A-2.

The projection of the solutions on the U-x and t-x planes are shown

in Figures A-3 and A-4, respectively.

Solution Ia accelerates from zero temperature and velocity

through the sonic velocity to M = V_5 at x = w. The temperature reaches

a maximum at x = 0.9 where U = 0.9. Energy is always added to the

flow, but the rate of addition diminishes with x. In solution Ib, the

velocity is constant and the temperature increases linearly with x,

so that the initially supersonic flow becomes subsonic. Energy is

added to the flow at a constant rate.

Energy is first extracted from the flow when it is super-

sonic and then added when it becomes subsonic in solution ha. The

flow begins at U = 2.34 with zero temperature and decelerates to

U m 0.4 and infinite temperature. Solution IIb is a constant Mach

number flow at the sonic velocity.

A closed form solution corresponding to Ia and Ib appears

in Reference 4. Solutions Ia and Ha were discussed in Reference 5,

but calculationswere not made.
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